
Friedmann equation:

In the classical approach:

Due to the homogeneity of the universe, we can choose a reference system OXYZ. We shall further
take a mass �m at a distance r~ from the origin of the reference system, that moves together with
the space around it (the shell or radius r), with speed v~=Hr~. From Gauss Theorem, only the mass
inside the shell generates gravitational �eld on the border (mass �m).v

@V
g~ dA~ =¡4�GMV

From Newton`s second principle we have :
G�mMV

r2
=¡�m r� (8)

G�mMV

r2
dr=¡�m r�dr=¡�m r�r_ dt=¡1

2
�md(r_2)

After integration we obtain

r_2

2
=

GMV

r
+C

We know that r_ =Hr and M =
4�

3
r3�m, where �m is the mass density

H2r2

2
=

4�G�m
3r

r3+C�
H2

2
¡ 4�G�m

3

�
r2=C (9)

Let K�¡2C

c2
, where c= speed of light in vacuum

If we derived the Friedmann equation using general relativity the numerical constant K would have
told us the curvature of the space .

If : k=

8<: 1 ; the geometrywouldbe spherical
0;the geometrywouldbe �at (euclidian)
¡1 ; the geometrywouldbe hyperbolic

�
H2¡ 8�G�m

3

�
r2=¡Kc2

r~ = ar0~ )
�
H2¡ 8�G�m

3

�
a2=

¡Kc2

r0
2 (10)

This is the Friedmann equation.

Density as a function of the scale factor:

Since the universe is homogeneous and isotropic, the temperature is constant throughout the space
at any given time.

From the �rst principle of thermodynamics, we have dU = �Q ¡ �L, but from above, �Q=0, so
dU =¡pdV

dV =
4�

3
d(r3)

But U =
4�

3
�e r

3, where �e is the mass energy density

Thus, d
¡ 4�
3
�e r3

�
=¡p4�

3
d(r3)

d(�er3)

dt
=
¡pd(r3)

dt
(11) , which is the �uid equation

The equation of state : p=w�e (12)

Substituting p with w�e in (11):
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d(�er3)

dt
+

w�e d(r3)

dt
=0

d�e
dt
r3+ �e

d(r3)

dt
+

w�e d(r3)

dt
=0

d�e
dt
r3+

(1+w)�e d(r3)

dt
=0

d�e
�e
+(1+w)

d(r3)

r3
=0 (13)

After integration:

ln
¡
�e r

3(1+w)
�
= ct)�er

3(1+w)= �0;er0
3(1+w)

r=ar0 and a0=1, so �e= �0;ea
¡3(1+w) (14)

Due to �e= �mc
2, it also holds in the form �m= �0;ma

¡3(1+w) (14')

Thus, �e� a¡3(1+w)

Equation of state for matter and radiation:

Let there be a box of length L and area S.

Let there be a generic particle with impulse p and px; py; pz the projections of the impulse on axes
OX, OY, OZ.

hpx2 i= hpy2 i= hpz2i (15)

px
2 + py

2 + pz
2= p2)hpx2 + py

2 + pz
2i= hp2i) hpx2 i+ hpy2 i+ hpz2i= hp2i) hpx2 i= hpy2 i= hpz2i=

1

3
hp2i

(15')

The variation of impulse at a collision is �px=2px

The pressure P = F

S
=

dpcollision
Sdt =

1

S

D
�N

�t
2px
E
=

1

S
hnLSvx

2L
2pxi=nhpxvxi=nhpxvxmc2

E
i=nhpxmvx c2

E
i=

nhpx
2c2

E
i=n

c2

E

hp2i
3

(16)

For normal matter:

P =n
m2 c2

E
�
1

v2
¡ 1

c2

�) P

�
=

np2c2

3nE2
=

1

3

m2v2c2

m2c4
=

1

3

v2

c2
' 0, (dust approximation) thus w=0

For photons:

P =n
p2c2

3E
=

nE2

3E
=

nE

3
=

�e
3
, thus w= 1

3

(concluzii personale)

We can observe from (16) that for particles that P = n
c2

E

hp2i
3

=
nE

E

c2

E

hp2i
3

= �e
m2c2v2

3E2
=

�e
3

v2

c2
, so

w=
P

�e
=

1

3

v2

c2
, thus it can only be between 0 and 1

3
.

If there would be a particle �uid with w> 1

3
, its particles' speed would be greater than the speed

of light.

Thus, a �uid with w> 1

3
can only be intrinsic to the space.

Fluids where w< 0 must have negative pressure.

If such �uids would be made of particles, they would receive impulse in the direction of their original
velocity.
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It is obvious that if such particles would have positive mass, their impulse would grow inde�nitely.
As such, the only possibility would be for them to have negative mass (considering that the energy
density �e must be positive for w to be negative, their energy must be positive, so it would be
de�ned as E = jmc2j), which would explain models of universes with 0>w>¡1

3
.

For �uids with w<¡1

3
it is clear that they cannot be made of particles, thus they must be intrinsic

to the space.

By writing the �rst principle of thermodynamics in this case we obtain:

dL=¡pdV =¡w�e dV = jw j� edV)dL

dV
= jw j�e= jw jdEdV

For w>¡1 the �uid receives less energy than it spends expanding, so its density lowers with the
increase of the universe's size.

For w<¡1 the �uid receives more energy than it spends expanding, so its density grows with the
increase of the universe's size.

For w=¡1 the �uid receives exactly the same energy it spends expanding, thus having constant
density no matter the size of the universe or how it grows or shrinks. Such a result can be
interpreted as the energy of the empty space.

Expansion of single-�uid universe:

From (10):�
H2¡ 8�G�m

3

�
a2=

¡Kc2

r0
2�

H2¡ 8�G�m
3

�
a3=

¡Kc2

r0
2 a�

H2¡ 8�G�m
3

�
a3=

¡Kc2

r0
2 a (17)

d

dt

h�
H2¡ 8�G�m

3

�
a3
i
=

d

dt

�
¡Kc2

r0
2 a

�
, substituting H with a_

a
, we obtain

d

dt

�
a_2a¡ 8�G�ma3

3

�
=

d

dt

�
¡Kc2

r0
2 a

�
2a a_ a�+ a_3¡ 8�G

3

d(�ma3)

dt
=
¡Kc2

r0
2 a_ (18)

We know that d(�ea3)

dt
+

w�e d(a3)

dt
= 0 , but �e = �mc

2 so d(�mc2a3)

dt
+

w�mc2 d(a3)

dt
= 0) d(�ma3)

dt
+

w�m d(a3)

dt
=0

using d(�ma3)

dt
+

w�m d(a3)

dt
=0 in (18), we obtain

2a a_ a�+ a_3+
8�G

3
w�m

d(a3)

dt
=
¡Kc2

r0
2 a_, but we know that K =¡

��
a_

a

�
2
¡ 8�G�m

3

�
a2

c2
r0
2, so it becomes:

2a a_ a�+a_3+8�Gw�ma
2a_ = a_3¡ 8�G�m

3
a2a_ :

By divinding with 2aa_, we obtain the acceleration a�:

a�=¡4�G�ma
¡
w+

1

3

�
(19)

Knowing that �m= �0;ma
¡3(1+w) , we have a=

�
�m
�0;m

� ¡1
3(1+w) (20)

Substituting in the last equation, we obtain the �nal result

a�=¡4�G�0;m
1

3(1+w)�m

2¡3w
3(1+w)

¡
w+

1

3

�
(21)
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We observe that both �m and �0;m are positive. From this observation we conclude that the sign
of the acceleration only depends on the sign of w+ 1

3
.

If w>¡1

3
then the expansion of the universe will decelerate.

If w<¡1

3
then the expansion of the universe will accelerate.

Finally, if w=¡1

3
then the universe will expand with constant velocity.

Scale factor as a function of time

From (19), substituting �m from (20) we have:

a�=¡4�G�0;ma¡3(1+w)+1
¡
w+

1

3

�
For any w=/ ¡1

3
we have :

d(a_2)= 2a�da=¡8�G�0;m
¡
w+

1

3

�
a¡2¡3wda

a_2=C0¡ 8�G�0;m
¡
w+

1

3

� a¡1¡3w
¡1¡ 3w =C0+

8�G�0;m

3
a¡1¡3w

a_ = C0+
8�G�0;m

3
a¡1¡3w

q
(22)

da

C0+
8�G�0;m

3
a¡1¡3w

q = dt (23)

A �rst observation is that 1

2
mC0=

1

2
ma_2¡ 4�Gm�0;m

3
a¡1¡3w=

Em;0

r0
2 , whereEm;0 is the total energy

of a particle of mass m in the universe.

A second observation is that there is no function in closed form whose di�erential is the left term
in (22).

Thus, we will consider 3 cases:

I) C0=0, which means that the total energy of any particle in the universe is 0 ,and also that K
from 2.1) is equal to 0 .

Here, (23) becomes

3

8�G�0;m

q
a
1+3w

2 da=dt

which can be easily integrated (on two cases):

a) w=/ ¡1

3

8�G�0;m

q
a(t)

3(1+w)

2 ¡ a(t0)
3(1+w)

2

3(1+w)

2

= t¡ t0

1

6�G�0;m

q �
a(t)

3(1+w)

2 ¡ 1
�
= t¡ t0

a
3(1+w)

2 ¡ 1= 6�G�0;m
p

(t¡ t0)

a(t)=
¡
1+ 6�G�0;m

p
(t¡ t0)

� 2

3(1+w) (24)

Considering that the universe had a Big Bang ( that would mean that a(0)=0 ) .

a(0)=0)1¡ 6�G�0;m
p

t0=0) a(t)= 6�G�0;m
p3(1+w) t

2

3(1+w) (24')

From (14'), we have �m= �0;m
1

6�G�0;mt2
=

1

6�Gt2
, which is true for any w (except ¡1, of course)
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For matter, a(t)= 6�G�0;m
p3 t

2

3

For radiation, a(t)= 6�G�0;m
p4 t

1

2

From thermodynamics, we know that uc

4
= �T 4 1, so T = �mc

4�

q
4

=
1

k

5c3h3

16�5G

q
4

1

t

q
, where k is the

Boltzmann constant , h is the Planck constant , and �= 2�5k4

15c2h3 is the Stefan-Boltzmann constant .

b) w=¡1

3

8�G�0;de

q
da

a
=dt

3

8�G�0;de

q
ln
�
a(t)

a(t0)

�
=

3

8�G�0;de

q
ln(a(t)) = t¡ t0

a(t)= e
8�G�0;de

3

q
(t¡t0)

= eH0(t¡t0) (24�)

�(t)= �0;de

II) C0=
¡c2

r0
2 (that means that theK from 2.1) is equal to 1 ; and also that the energy of the universe

is less than 0 ) :

da

¡c2

r0
2
+
8�G�0;m

3
a¡1¡3w

r = dt) da

¡1+
8�G�0;m

3
c2

r0
2

a¡1¡3w
vuut =

c

r0
dt

We shall de�ne 8�G�0;m

3
c2

r0
2

=B¡1¡3w= constant , to simplify our calculations .

da

¡1+ (Ba)¡1¡3w
p =

c

r0
dt) d(Ba)

¡1+ (Ba)¡1¡3w
p =

cB
r0
dt) d(Ba)

(Ba)¡1¡3w¡ 1
p =

cB
r0
dt) d(Ba)

1

(Ba)1+3w
¡ 1

r =
cB
r0
dt

The integral on the left side doesn`t have a closed form .

We shall treat the 3 particular cases of interest:

a) For matter ( w=0 ) : d(Ba)
1

(Ba) ¡ 1
q =

cB
r0
dt

We can compute the integral on the left side using a trigonometric substitution : Ba= sin2(�))
d( sin2(�))

1

sin2(�)
¡ 1

r =
cB
r0
dt) 2 sin(�) d( sin(�))

1¡ sin2(�)
sin2(�)

r =
cB
r0
dt) 2 sin(�) cos(�) d�

cos(�)
sin(�)

=
cB
r0
dt) 2 sin2(�) d�= cB

r0
dt

)2 sin2(�) d�=2
�
1¡ cos(2�)

2

�
d�=d�¡ cos(2�)d(2�)

2
= d�¡ d(sin(2�))

2

)t =
r0
cB

�
� ¡ �(0) ¡

sin(2�)¡ sin(2�(0))
2

�
, where �(0) = arcsin

¡
Ba(0)

p �
= 0 , assuming that this

universe had a Big Bang ( a(0)=0 ).

)t=
r0
cB

�
�¡ sin(2�)

2

�
=

r0
8�G�0;m

3
c2

r0
2

c

�
�¡ sin(2�)

2

�
=

8�G�0;mr0
3

3c3

�
�¡ sin(2�)

2

�

)

8><>:
t=

8�G�0;mr0
3

3c3

�
�¡ sin(2�)

2

�
a=

8�G�0;mr0
2

3c2

�
1

2
¡ cos(2�)

2

�
We cannot have a explicit function for a(t) because for that we need to �nd �(t) which would imply
to solve a transcendent equation , that being impossible through analytic methods.

1. http://www.pha.jhu.edu/~kknizhni/StatMech/Derivation_of_Stefan_Boltzmann_Law.pdf
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We can �nd �m(�)= �0;m
�
8�G�0;mr0

2

3c2

�
1

2
¡ cos(2�)

2

��¡3
b) For radiation ( w= 1

3
) :

d(Ba)
1

(Ba)2
¡ 1

r =
cB
r0
dt ) d(Ba)

1

(Ba)2
¡ 1

r =
d(Ba)

1¡ (Ba)2

(Ba)2

r =
d(Ba)Ba

1¡ (Ba)2
p =

d( (Ba)2)

2 1¡ (Ba)2
p = ¡ d(1¡ (Ba)2)

2 1¡ (Ba)2
p = ¡

d
¡

1¡ (Ba)2
p �

)d
¡

1¡ (Ba)2
p �

=¡cB
r0
dt) 1¡ (Ba)2

p
¡ 1¡ (Ba(0))2
q

=¡cB
r0
t , where a(0)=0 , assuming that

this universe had a Big Bang.

1¡ (Ba)2
p

=1¡ cB
r0
t)1¡ (Ba)2=

�
1¡ cB

r0
t
�
2
) (Ba)2=1¡

�
1¡ cB

r0
t
�
2
)Ba= 1¡

�
1¡ cB

r0
t
�
2

r

a(t)=

 
3
c2

r0
2

8�G�0;r

!
¡1/2

0BB@1¡
0B@
1¡

c

0@ 3
c2

r0
2

8�G�0;r

1A1/2
r0

t

1CA
2
1CCA
1/2

)�r(t)= �0;r

0@ 1¡
�
1¡ cB

r0
t

�
2

s
B

1A¡4
= �0;r

0BBB@
 

3
c2

r0
2

8�G�0;r

!
¡1/2

0BB@1¡
0B@
1¡

c

0@ 3
c2

r0
2

8�G�0;mr

1A1/2
r0

t

1CA
2
1CCA
1/2
1CCCA
¡4

For this case we can also calculate the time dependance of the temperature of the radiation :

uc

4
=�T 4)T =

¡ �r(t)c
4�

�
1/4=

0B@ c

4�
�0;r

0@ 1¡
�
1¡ cB

r0
t

�
2

s
B

1A¡4
1CA1/4where B=

 
8�G�0;r

3
c2

r0
2

!
¡1/2

c) For dark energy (w=¡1) :
d(Ba)
1

(Ba)¡2
¡ 1

r =
cB
r0
dt) d(Ba)

(Ba)2¡ 1
p =

cB
r0
dt

Using Wolfram Alpha we can compute the integral on the left side :

ln
�

(Ba)2¡ 1
p

+Ba

(Ba(0))2¡ 1
p

+Ba(0)

�
=

cB
r0
t) (Ba)2¡ 1

p
+Ba=

�
(Ba(0))2¡ 1

q
+Ba(0)

�
e
cB
r0
t

) (Ba)2¡ 1= (Ba)2¡ 2Ba
�

(Ba(0))2¡ 1
q

+Ba(0)
�
e
cB
r0
t
+

��
(Ba(0))2¡ 1

q
+Ba(0)

�
e
cB
r0
t
�
2

)2Ba
�

(Ba(0))2¡ 1
q

+Ba(0)
�
e
cB
r0
t
=

��
(Ba(0))2¡ 1

q
+Ba(0)

�
e
cB
r0
t
�
2

+1

)a=

�
(Ba(0))2¡ 1

q
+Ba(0)

�
e

cB
r0

t

+

�
(Ba(0))2¡ 1

q
+Ba(0)

�¡1
e

¡cB
r0

t

2B

This universe behaves now in a very di�erent way than before . It seems that if this universe
had a Big Bang(a(0)=0) , then a(t) would somehow be imaginary . That , at least in our current
understanding , is not possible. So that would mean that the initial assumption is incorrect . This
kind of universe did not have a Big Bang (a(0)=0) . We shall take the �rst value of a0 that will
not give us a imaginary value for a(t) .

That would be a0=
1

B
) a(t)=

e

cB
r0

t

+ e

¡cB
r0

t

2B
=

sinh
�

cB
r0
t

�
B

, where B=

 
8�G�0;de

3
c2

r0
2

!
1/2

�de= �0;de=constant
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III) C0=
c2

r0
2(thatmeans that theK from2.1) is equal to¡1; and also that the energy of the universe

is bigger than 0 ) :

da

c2

r0
2
+
8�G�0;m

3
a¡1¡3w

r = dt) da

1+
8�G�0;m

3
c2

r0
2

a¡1¡3w
vuut =

c

r0
dt

We shall de�ne 8�G�0;m

3
c2

r0
2

=B¡1¡3w= constant , to simplify our calculations .

da

1+ (Ba)¡1¡3w
p =

c

r0
dt) d(Ba)

1+ (Ba)¡1¡3w
p =

cB
r0
dt) d(Ba)

1+
1

(Ba)1+3w

r =
cB
r0
dt

The integral on the left side doesn`t have a closed form .

We shall treat the 3 particular cases of interest:

a) For matter ( w=0 ) :

d(Ba)

1+
1

(Ba)

q =
cB
r0
dt

We can compute the integral on the left side using a hyperbolic substitution : Ba= sinh2(�)

) d(sinh2(�) )

1+
1

sinh2(�)

r =
cB
r0
dt) 2 sinh(�) cosh(�) d�

cosh(�)
sinh(�)

=
cB
r0
dt)2 sinh2(�)d�= cB

r0
dt) (cosh(2�)¡1)d�= cB

r0
dt

) cosh(2�)d(2�)
2

¡ d� =
cB
r0
d t) t =

r0
cB

�
sinh(2�)¡ sinh(2�(0))

2
¡ (�¡�(0) )

�
, where

�(0)= argsinh( Ba0
p

) , where

argsinh(x) is the argument of the hyperbolic function sinh(x). a(0) =0 , assuming that this universe

had a Big Bang . )�0=0)t=
r0
cB

�
sinh(2�)

2
¡�

�
Also a(�)=

(cosh(2�)¡ 1)
2B

.

We cannot have a explicit function for a(t) because for that we need to �nd �(t) which would imply
to solve a transcendent equation , that being impossible through analytic methods.

We can �nd �m(�)= �0;m

�
(cosh(2�)¡ 1)

2B

�¡3
, where B=

 
8�G�0;m

3
c2

r0
2

!¡1
b) For radiation ( w= 1

3
)

d(Ba)
1

(Ba)2
+1

r =
cB
r0
dt) d(Ba)

1

(Ba)2
+1

r =
d(Ba)

1+ (Ba)2

(Ba)2

r =
d(Ba)Ba

1+ (Ba)2
p =

d( (Ba)2)

2 1+ (Ba)2
p =

d(1+ (Ba)2)

2 1+ (Ba)2
p = d

¡
1+ (Ba)2

p �
)d
¡

1+ (Ba)2
p �

=
cB
r0
dt) 1+ (Ba)2

p
¡ 1+ (Ba(0))2
q

=
cB
r0
t , where a(0)=0 , assuming that this

universe had a Big Bang.

) 1+ (Ba)2
p

¡ 1= cB
r0
t) 1+ (Ba)2=

�
1+

cB
r0
t
�
2
)Ba=

�
1+

cB
r0
t
�
2
¡ 1

r

)a=
1

B

�
1+

cB
r0
t
�
2
¡ 1

r
, where 8�G�0;m

3
c2

r0
2

=B¡2)B=

 
8�G�0;r

3
c2

r0
2

!
¡1/2

)�r(t)= �0;r

0@ �
1+

cB
r0
t

�
2

¡ 1

s
B

1A¡4

For this case we can also calculate the time dependance of the temperature of the radiation :
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uc

4
=�T 4)T =

¡ �r(t)c
4�

�
1/4=

0B@ c

4�
�0;r

0@ �
1+

cB
r0
t

�
2

¡ 1

s
B

1A¡4
1CA1/4

c)For dark energy (w=¡1) :
d(Ba)
1

(Ba)¡2
+1

r =
cB
r0
dt) d(Ba)

(Ba)2+1
p =

cB
r0
dt

Using Wolfram Alpha we can compute the integral on the left side :

ln
�

(Ba)2+1
p

+Ba

(Ba(0))2+1
p

+Ba(0)

�
=

cB
r0
t) (Ba)2+1

p
+Ba=

�
(Ba(0))2+1

q
+Ba(0)

�
e
cB
r0
t

) (Ba)2+1= (Ba)2¡ 2Ba
�

(Ba(0))2+1
q

+Ba(0)
�
e
cB
r0
t
+

��
(Ba(0))2+1

q
+Ba(0)

�
e
cB
r0
t
�
2

)2Ba
�

(Ba(0))2+1
q

+Ba(0)

�
e
cB
r0
t
=

��
(Ba(0))2+1

q
+Ba(0)

�
e
cB
r0
t
�
2

¡ 1

)a=

�
(Ba(0))2+1

q
+Ba(0)

�
e

cB
r0

t

+

�
(Ba(0))2+1

q
+Ba(0)

�¡1
e

¡cB
r0

t

2B

If we assume that the universe had a Big Bang )a(0)=0

)a(t)=
e

cB
r0

t

+ e

¡cB
r0

t

2B
=

cosh
�

cB
r0
t

�
B

,where B=

 
8�G�0;de

3
c2

r0
2

!
1/2

�de= �0;de=constant

We shall now consider the case when w=¡ 1

3
:

a�=¡4�G�0;ma
¡3
�
1¡1

3

�
+1¡¡1

3
+

1

3

�
=0)a_2=C0=

¡Kc2

r0
2 , where K is the K used and de�ned at 2.1) .

If K=1)a_2=
¡c2

r0
2 ) a_ is imaginary , which is impossible , so a universe like this can not exist .

If K =0) a_2=0) a= a(0)= constant) �m= �0;ma(0)
¡2

If K =¡1) a_2=
c2

r0
2) a¡ a(0)=�

c

r0
t) a(t)= a(0)�

c

r0
t) �m= �0;m

�
a(0)�

c

r0
t
�¡2

In a lot of the cases described above we have used the fact that if the universe we were talking
about had a �Big Bang� , then a(0)=0 , so the size of that universe at its beginning was 0 . What
we mean by �Big Bang� , is the fact that the universe we were talking about had a beginning similar
to ours . That is , it expended from �nothingness�, a quantum �uctuation, a singularity , or in
more mathematical terms a(0)=0.

To �nd if a universe will collapse or expand forever we need to take the di�erantial equation:

a�=¡4�G�0;ma¡(2+3w)
¡
w+

1

3

�
and solve it to �nd a(t) . If the equation a(t) = 0 has any other solution besides the trivial one
a(0)=0 then the univers will collapse . If not , the universe will expand forever.

We shall now make a similar analysis to what we did at 2.6) .

If w=/ 1

3
:

I) If K=0 ( the energy of the universe is equal to 0 ) :
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a) If w=/ ¡1 :

a(t)= 6�G�0;m
p3(1+w) t

2

3(1+w) =0) t=0) a(0)=0

In this case the only solution is the trivial one so for any w , including matter and radiation with
the conditions above the universe will expand forever.

b) If w=¡1 :

a(t)= e
8�G�0;m

3

q
(t¡t0)

= 0) There are no solutions to this equation, so this universe will expand
forever.

II) If K=1 ( the energy of the universe is less than 0) :

d(Ba)
1

(Ba)1+3w
¡ 1

r =
cB
r0
dt

For our universe (multiple �uids)

It has been determined that our universe is �at with a very small (0.4%) margin of error2.

So, it's energy is '0 and K=0.

In the Friedmann equation derivation at (2.1) �m is the total equivalent mass density (the sum of
the 3 mass and equivalent mass density).�
H2¡ 8�G�m

3

�
a2=

¡Kc2

r0
2 =0�

H2¡ 8�G(�b+ �r+ �de)

3

�
a2=0, where �b is the baryonic mass density, �r is the equivalent photon

mass density and �de is the equivalent dark energy mass density.

Now we shall use (14'):

�b= �b;0a
¡3(1+wb) �r= �r;0a

¡3(1+wr) �de= �de;0a
¡3(1+wde) (25)

�0= �b;0+ �r;0+ �de;0 (26)


b;0=
�b;0
�0

= 0.27� 0.04% 
r;0=
�r;0
�0

= 8.24� 10¡5 
de;0=
�de;0
�0

= 0.73� 0.04% (27)�
H2¡ 8�G�0

¡

b;0a

¡3(1+wb)+
r;0a
¡3(1+wr)+
de;0a

¡3(1+wde)
�

3

�
a2=0

As we can see from the numerical values, the radiation component is negligible, so we can write:�
H2¡ 8�G�0

¡

b;0a

¡3(1+wb)+
de;0a
¡3(1+wde)

�
3

�
a2=0

Substituting H0 with
a_

a
we obtain:

a_2=
8�G�0
3

¡

b;0a

¡(1+3wb)+
de;0a
¡(1+3wde)

�
, where wb=0 and wde=¡1

a_2=
8�G�0
3

(
b;0a
¡1+
de;0a

2)

a_ =
8�G�0
3

(
b;0a
¡1+
de;0a

2)
q

Writing it in a di�erential form:

da

8�G�0
3

(
b;0a¡1+
de;0a2)
q = dt

2. http://map.gsfc.nasa.gov/universe/uni_shape.html
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da


b;0a¡1+
de;0a2
p =

8�G�0
3

q
dt

a
p

da

1+

de;0


b;0
a3

r = 
b;0
8�G�0
3

q
t=H0 
b;0

p
dt (28)

Integrating the left and right parts between 0 and a, respectively 0 and t, we have:

2argsh

 

de;0


b;0

r
a
3

2

!

3

de;0


b;0

r =H0 
b;0
p

t (29)

argsh
�


de;0


b;0

q
a
3

2

�
=

3

2
H0 
de;0
p

t

And here we �nd a(t).

a(t)=

b;0

de;0

q
3

sinh
2

3
¡ 3
2
Hot 
de;0

p �
(30)

From (25):

�b(t)= �0
b;0a
¡3= �0
de;0 sinh¡2

¡ 3
2
H0 
de;0
p

t
�
(31)

�r(t) = �0
r;0a
¡4= �0
r;0

�

de;0


b;0

�4
3sinh¡

8

3
¡ 3
2
Ho 
de;0
p

t
�
(32)

�de(t)= �0
de;0a0= �0
de;0 (33)

�(t)= �0
�

de;0 sinh¡2

¡ 3
2
H0 
de;0
p

t
�
+
r;0

�

de;0


b;0

�4
3sinh¡

8

3
¡ 3
2
Ho 
de;0
p

t
�
+
de;0

�
(34)

If we neglect the radiation part:

�(t)= �0
¡

de;0 sinh¡2

¡ 3
2
H0 
de;0
p

t
�
+
de;0

�
= �0
de;0

¡
1+ sinh¡2

¡ 3
2
H0 
de;0
p

t
��

(34')

Age of the universe, periods of domination

For �nding the age of the universe, we will equate �(t0) with �0.

�(t0)= �0) 1=
de;0
¡
1+ sinh¡2

¡ 3
2
H0 
de;0
p

t
��
) sinh¡2

¡ 3
2
H0 
de;0
p

t0
�
=

1


de;0
¡ 1

3

2
H0 
de;0
p

t0= argsh
�


de;0
1¡
de;0

q �

t0=
2

3

argsh

 

de;0

1¡
de;0

r !
H0 
de;0
p (35)

For H0= 71.7 km
s , t0= 13.54� 109 years

For H0= 67.8 km
s

3, t0= 14.32� 109 years

For �nding the periods of domination for each �uid type, we will compare their densities. The �uid
with the largest density will be the dominant one in the same volume.

From (31) and (32):

�b> �r)
b;0 a
¡3>
r;0 a

¡4) a>

r;0


b;0

From (30):

3. http://arxiv.org/abs/1303.5062
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b;0


de;0

q
3

sinh
2

3
¡ 3
2
Hot 
de;0

p �
>


r;0


b;0

Plugging numerical values in:

0.7178 sinh
2

3(1.2816H0t)> 3.05� 10¡4) t > t1= 21366t 9.37� 105 years

From (32) and (33):

�r> �de)
r;0a¡4>
de;0) a<

r;0


de;0

q
4

From (30) and by plugging numerical values in, we have t < t2= 5.8� 108 years

From (31) and (33):

�b> �de)
b;0a
¡3>
de;0) a<


b;0

de;0

q
3

From (30) and by plugging numerical values in, we have t < t3= 9.4� 109 years

For 0<t< t1, radiation dominated the universe.

For t1<t< t3, matter dominated the universe.

For t > t3, dark energy dominated the universe.

Also, at t= t2, the radiation's energy density decreased under the dark energy's density.

Figure 1. Plots of density against time (normal and logarithmic).

Radiation in orange, matter in blue, dark energy in greeen.

Total density in red.
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3.4)

�dom= �0
dom;0a
¡3(1+wdom)

�dom��0
de;0a
0) a¡3(1+wdom)� 1

As we are interested in the far future, t > t0) a(t)> 1

Thus, we will have ¡3(1+wdom)> 0)wdom<¡1

This type of matter is called �phantom energy� . (citation wiki)

In this case, the universe will expand to an in�nite size in a �nite time4 5.

Expansion of our universe:

Now we shall try to derive a relation from which we can �nd H0 :

Let`s consider a photon traveling from the emission point to the observation point. The distance
covered by the photon in the time dt is dr=cdt. We cannot simply sum those elementary distances
because the space is expanding so we have to scale them. As such we have to sum dr0=

cdt

a(t)
, where

r0 is the distance between the source of emission and the observer at the present time when a=1.R
0

r0 dr0=
R
te

to cdt

a(t)
) r0=

R
te

to cdt

a(t)
)r(t)=a(t)

R
te

to cdt

a(t)
, where r(t) is the distance between the source

of emission and the observer at a given time t:

r(t)= a(t)
R
te

to cdt

a(t)

da

da
) r(t)= a(t)c

R
a(te)

a(to) da

a(t)
da

dt

, where a(te)=
1

1+ ze
and a(t0)=1:

From 1.3.b) we know that a(t)=
1

1+ z
) da=¡ dz

(1+ z)2
=¡a(t)2 dz

)r(t)= a(t)c
R
a(te)

a(t0) ¡a(t)
2 dz

a(t)
da

dt

=¡a(t)c
R
a(te)

a(t0) dz
a_ (t)

a(t)

=¡a(t)c
R
ze

0 dz

H(z)
= a(t)c

R
0

ze dz

H(z)

We have to �nd H(z) now. Using the Friedmann equation
�
H2¡ 8�G�

3

�
a2=

¡Kc2

r0
2 and expressions

for the densities derived at 3.2) :
�
H2¡

8�G�0

3
(
b;0a

¡3+
r;0a
¡4+
de;0)

�
a2=

¡Kc2

r0
2 . Because our

universe is nearly �at6 we can use K=0.

)H2=
8�G�0

3
(
b;0a

¡3+
r;0a
¡4+
de;0))H =H0 
b;0a

¡3+
r;0a
¡4+
de;0

p
)H(z)=H0 
b;0(1+ z)3+
r;0(1+ z)4+
de;0

p
From the text of the problem we know that DL =

L

4�f

q
, but L is an instrinsic property of the

source so it doesn't depend on the distance from it, but f does depend on the distance between
the source and the observer which is r0 as de�ned above.

f =
�Eo
�to

1

4�r0
2 , where

�Eo
�to

is the energy in unit time as received by the observer. We can relate this

quantity to L in the following way:

4. http://arxiv.org/pdf/hep-th/0610213v2.pdf
5. http://arxiv.org/pdf/astro-ph/0302506v1.pdf
6. http://map.gsfc.nasa.gov/universe/uni_shape.html
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�E� 1

�
)�Eo=�Ee

�e
�o
. Using the formula for the cosmological redshift derived at 1.3.b) :

)�Eo=
�Ee
1+ ze

Using the equation for cosmological time dilation also derived at 1.3.b) :

�to=(1+ ze)�te

Using the de�nition of luminosity as the energy radiated by the source in unit time at its surface:
L=

�Ee
�te

we now have f = L

4�[(1+ ze)r0]
2 . We also know that DL=

L

4�f

q
) f =

L

4�DL
2 .

)DL=(1+ ze)r0

We now have 3 main equations from which we can �nd a formula for H0:

r(t)= a(t)c
R
0

ze dz

H(z)
) r(to)= r0= c

R
0

ze dz

H(z)

H(z)=H0 
b;0(1+ z)3+
r;0(1+ z)4+
de;0
p

DL=(1+ ze)r0

)r0 =
DL

1 + ze
= c

R
0

ze dz

H0 
b;0(1 + z)3+
r;0(1 + z)4+
de;0
p ) H0 =

c(1+ ze)

DL

R
0

ze dz


b;0(1+ z)3+
r;0(1+ z)4+
de;0
p

From this formula we can compute H0 using the tables given.7

First method:

First we will linearize the data

Let f(ze)= (1+ ze)
R
0

ze dz


b;0(1+ z)3+
r;0(1+ z)4+
de;0
p

Now, we can write DL=
c

H0
f(ze)

7. general citation from int to modastro
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