Friedmann equation:
In the classical approach:

Due to the homogeneity of the universe, we can choose a reference system OXYZ. We shall further
take a mass dm at a distance 7 from the origin of the reference system, that moves together with
the space around it (the shell or radius r), with speed ¥ =H7. From Gauss Theorem, only the mass
inside the shell generates gravitational field on the border (mass dm).

Sﬁﬁav gdA=—47G My
From Newton‘s second principle we have :

GomMy — _5mi (8)

GmMY 1y = —§m i dr = —m i i dt = —=omd(#?)
T 2

After integration we obtain

72 GMV+C

2 T

We know that = Hr and M = 2Ty3 Pm, Where p,, is the mass density
3

H?r? _ 47nGpm
r:WpT3+C
2 3r

(F-==)r=c o)

Let K= —26—5, where ¢ =speed of light in vacuum

If we derived the Friedmann equation using general relativity the numerical constant K would have
told us the curvature of the space .

1, the geometry would be spherical
If : k=4 0,the geometry would be flat (euclidian)
—1, the geometry would be hyperbolic

(H2 - —SWC;’)’” )7"2: —Kc?

o2
F:afbé(HQ—SﬂC;pm)ﬁ: K< (10)

0

This is the Friedmann equation.

Density as a function of the scale factor:

Since the universe is homogeneous and isotropic, the temperature is constant throughout the space
at any given time.

From the first principle of thermodynamics, we have dU = §@Q — § L, but from above, §Q=0, so
dU =—pdV

_ A7 g3
But U= 4—;pe r3, where p, is the mass energy density
4m B 4m B
Thus, d(?pe rd) = fp?d(r“”)

d(per®) _ —pd(r®) . . . .
T =—g;— (11) , which is the fluid equation

The equation of state : p=wp, (12)
Substituting p with wp, in (11):



d(per®) + wpe d(r) -0

dt dt
dpe 3+ edg":) 4 WP T) wﬂe d("n ) =0
dper 4 Qtwpeedr?®)

dt

e 4 (14 w)d) —0 (13)

Pe

After integration:
ln(pe ,r3(1+'w)) =ct :pe,ri%(l-‘rw) — Po,e’l"g(ler)

r=ary and ag=1, 50 p. = po..a 21+t (14)
Due to pe= pc?, it also holds in the form p,, = p07ma_3(1+w) (147)

Thus, pe~a 30+w)

Equation of state for matter and radiation:

Let there be a box of length L and area S.

Let there be a generic particle with impulse p and p;, p,, p. the projections of the impulse on axes
0X, OY, OZ.

(p2) = (p}) = (p2) (15)

PR+ py+p2=p = (P4 i+ p2) = (p%) = (2) + (03) + () = (p%) = (p2) = (p2) = (p2) =5 ()
(157)

The variation of impulse at a collision is dp, =2p;

mc? PaM Vg 2

nLSUT 2px> <vax> <px'Ux B > =n <T> =

The pressure P:g:m: S< 5 2px> (

) Sdt
2 2 /2
pec®\ _ < (p?)
For normal matter:

P=n m?c? P np3c? 1 m2v3c? 102

E( v ) ST =3 e =32 ~0, (dust approximation) thus w =0

v2 c2

For photons:

2.2 2
_ . pcc_nE* nE __ pe _1
P=ngp=g5=—75 =3 thsw=3

(concluzii personale)

c? <p2> - nE c? (Z)2> - m2c202 _ pe 02 o
3

We can observe from (16) that for particles that P=n4 =g = Peamr = a3

w= p£ = év— thus it can only be between 0 and =

If there would be a particle fluid with w >1 5, its particles’ speed would be greater than the speed
of light.

Thus, a fluid with w >§ can only be intrinsic to the space.
Fluids where w < 0 must have negative pressure.

If such fluids would be made of particles, they would receive impulse in the direction of their original
velocity.



It is obvious that if such particles would have positive mass, their impulse would grow indefinitely.
As such, the only possibility would be for them to have negative mass (considering that the energy
density p. must be positive for w to be negative, their energy must be positive, so it would be
1

defined as E = |mc?|), which would explain models of universes with 0 >w > — 3

For fluids with w < —% it is clear that they cannot be made of particles, thus they must be intrinsic
to the space.

By writing the first principle of thermodynamics in this case we obtain:
dL dE
dL=—pdV =—wp.dV =|w|pdV="3 = |w|pe=|w| 7

For w > —1 the fluid receives less energy than it spends expanding, so its density lowers with the
increase of the universe’s size.

For w < —1 the fluid receives more energy than it spends expanding, so its density grows with the
increase of the universe’s size.

For w = —1 the fluid receives exactly the same energy it spends expanding, thus having constant
density no matter the size of the universe or how it grows or shrinks. Such a result can be
interpreted as the energy of the empty space.

Expansion of single-fluid universe:

From (10):
87Gpm —Kc?
(HQ*—WBP )(ZQ: Tzc
0
87Gpm —Kc?
(Hz Trgp )as_ T;
0

- _ 2 .
i[(H2 — @)a“”} =4 (zEe a), substituting H with %, we obtain

dt dt r8
d 20— 8mGpma®\ _ d —Kcza
dt 3 Tdt r3
... 387G d(pma®) _ —Kc? .
2aad+a R T a (18)

d(pmc2a3) meC2 d(ag)

We know that d(’;‘f} + wﬂed‘i(ag') =0, but pe = pmc? so — 0= d(p$a3) 4

Wom d(a3) _ dt dt
dt -
. d(pma®) | wpmd(a? . .
using (pdta R dt(a ) =0 in (18), we obtain
e d(a® —Kc? . 1\ 2 m\ a2 .
2a 64+ a3 4 87;Gwpm (dat) = TSC @, but we know that K:—((%) - 87@3” )%r%, so it becomes:

e . .a 87Gpm 2.
2a.6 6403+ 8tGwpma’a=a’ — %a% )

By divinding with 2ad, we obtain the acceleration a:
i=—A4rGpma(w + %) (19)

—1
Knowing that pm, = po.ma >0+ | we have a = (p’i—m)'“"“*w) (20)

Substituting in the last equation, we obtain the final result

1 2—3w
= —4nGpl P o (w5) (21)



We observe that both p,, and pg ,, are positive. From this observation we conclude that the sign
of the acceleration only depends on the sign of w + %

If w> —% then the expansion of the universe will decelerate.

Ifw< —% then the expansion of the universe will accelerate.

Finally, if w= —% then the universe will expand with constant velocity.

Scale factor as a function of time

From (19), substituting p,, from (20) we have:
i = —4nGpy ma 31T wI+1 (w+ %)
For any w # f% we have :

d(a?) =2dda= —87Gpom(w + l)LL_Q_?"“’cla

3
—1-3w

. 1 87Gpo,m —1—
a2:CO787er07m(w+§)iIT&w:CO+%a 1—-3w

4= \/co + 5GP g 18w (99)

da
87Gp -
\/Co+ Soﬂna—lfdw

=dt (23)

o 1 1 .o 4nG 1o E .
A first observation is that ;mCo=5mad® — WQ 1=3w = Zm.0 “where E,, o is the total energy
0 ’

of a particle of mass m in the universe.

A second observation is that there is no function in closed form whose differential is the left term
in (22).

Thus, we will consider 3 cases:

I) Cy =0, which means that the total energy of any particle in the universe is 0 ,and also that K
from 2.1) is equal to O .

Here, (23) becomes

3 1+3wd d
\/s—a 2 a=dt
SWGPO,WL

which can be easily integrated (on two cases):

a) w#—1

3(1+w) 3(1+w)
3 a(t) 2 —a(ty) 2 —t_t
87Gpo,m 31+ w) - 0
2
T 3(1+w)
- 2 —
Ve (a) 1)=t—to

3(1+w)

@ = = 1= \/6nGpom(t —to)

Considering that the universe had a Big Bang ( that would mean that ag)=0) .

2
a(0) =0=1— \/67Gpomto=0= a(t) =" 67Gpy mt?T9 (24

From (14’), we have p,, =

PO GG = Gr G which is true for any w (except —1, of course)



. 2
For matter, a(t) =">\/67Gpo.mt?

For radiation, a(t)="\/67Gpomt?

4 35,3
. uc _ 41 o pPmC l 5¢c°h 1 .
From thermodynamics, we know that T =0T L,soT= /7= =+ ooV 1o where k is the
51.4
Boltzmann constant , h is the Planck constant , and o = 27 k" is the Stefan-Boltzmann constant .

15¢2 h3

b) w=-1
3 da __

V 87Gpo,de a =dt
3

a@®) \ _ 3 —
Va5 ) = Vrama e =t =t
7GP0 de
ot) = e,/g%(t—to) — eHo(t—to) (94

p(t) = po,de
2
II) Co= Tz (that means that the K from 2.1) is equal to 1, and also that the energy of the universe
0
is less than 0 ) :
___do =dt= __da =Lt
\/7; +Wa*1*3w \j1+”"g,ma13w 0
3 I
3

We shall define SWG% = B~173% = constant , to simplify our calculations .

2
0

—1+4 (Ba)—1-3w T —1+4 (Ba)—1-3w T V/(Ba)—1-3w _71 o

da cd d(Ba) __cB d(Ba) _cB

dt=——4By By,
To

= ==
\ (Baylt3w 1

The integral on the left side doesn‘t have a closed form .

We shall treat the 3 particular cases of interest:

d(Ba) _ cB
—4BY By
(Ba)

a) For matter (w=0) : -
1 0

We can compute the integral on the left side using a trigonometric substitution : Ba =sin?(a) =
d(sin?(«)) _ édt: 2 sin(a) d(sin(a)) _ ﬁdtﬁ 2 sin(a) cos(a) da _ ﬁdtﬁ 25in2(a) da = édt
1 7o 1 —sin?(a) To cos(a) 7o To
sinZ(a) ! sin2(a) sin(a)

) o 1 — cos(2a) o d(2a) d(sin(2ar))
=2sin’(a) dao =2 (T) da=da — cos(2a)=5—=da— ———=

T sin(2a) — sin(2ao))
=t = é(a —o) - ———

universe had a Big Bang ( a)=0 ).

), where o) = arcsin( Ba(o)) = 0 , assuming that this

87Gpo,m
To—
35
) _sin(2a) | rg _sin(2a) \ _ 871G po,mTh _ sin(2a)
=t= cB (Oé 2 ) o c « 2 o 3¢ a 2
t— SﬂGpoémrg o — sin(2a)
= 3c 2
__ 87Gpo,mri (1 __ cos(2a)
- 3c? 2 2

We cannot have a explicit function for a(;) because for that we need to find a(t) which would imply
to solve a transcendent equation , that being impossible through analytic methods.

1. hittp: //www.pha.jhu. edu/ “kknizhni/Stat Mech/Derivation_of Stefan Boltzmann_Law.pdf



3c? 2

87Gpo,mrd [ 1 _ cos(2a) -3
2 2

We can find pp(a) = p07m(

b) For radiation ( w:% )

ﬂ — édt = d(Ba) _ d(Ba) _ d(Ba) Ba _ d( (Ba)Q) _ d(lf(Ba)Q) _
" —5a — (Ba)? — (Ba)? — (Ba)2
Cr ’ \/ﬁ—l \/1(];732)2 V1= (Ba) 2/1—(Ba) 2,/T— (Ba)
d(v/1— (Ba)?)

=d(\/1—(Ba)?) = f%dté V1—(Ba)? —/1—(Ba))?= f%t , where a(y=0 , assuming that

this universe had a Big Bang.

1-Bayp=1-Li=1_(Ba)?= (1 —§t>2é(Ba)2:1 - (1 —§t>2éBa: 1- (1 f§t>2
T T T

To
2 1/2 2\ 1/2
.2 —1/2 BT(%
3:%% \ sxGro .
agy = -1

SWGPO,T To

—4

—4 2 )1/2 2\ 1/2

3—
1—(1—5B¢ 2 2 —-1/2 ¢ 3
"o 32 87Gpo, mr
—_— = po,r — 1-{1—-——¥t

= Pr(t) = Po,r 5 S7Cror -

For this case we can also calculate the time dependance of the temperature of the radiation :

—4\1/4
1—(1—%1&)2 o —1/2
(5)C 8 ,
2= o= 7= () 1= | g, | WhereB( —>
"8
¢) For dark energy (w=-1) :
d(Ba) _cB d(Ba) _ cB
N dt= NGO dt

(Ba)—2

Using Wolfram Alpha we can compute the integral on the left side :

VBa)> —1+B B g
1n<W+B:(O)):%t:>\/(Ba)2_1+Ba:( (Ba(o))Q—l—i—Ba(o))eO

cB

B\ 2
= (Ba)?—1=(Ba)?— 2Ba( (Ba(o))?— 1 JrBa(O))eTO +<< (Ba(g))? — 1 +Ba(0))em )

cB

B B 2
éQBa( (Ba(o))2—1 +Ba(0)>erot:<< (Ba(o))Q— 1 +Ba(0))eT0t) +1

,Bt

By -1 =<
(,/(Ba(o))2—1+Ba(0)>eT0 +(,/(Ba(0))2—1+Ba(g)> e 0

2B

=a=

This universe behaves now in a very different way than before . It seems that if this universe
had a Big Bang(a)=0) , then a(;) would somehow be imaginary . That , at least in our current
understanding , is not possible. So that would mean that the initial assumption is incorrect . This
kind of universe did not have a Big Bang (a()=0) . We shall take the first value of ag that will
not give us a imaginary value for a() .

B, —cB, sinh(gt) 1/2
1 7'0 7'0 Iy 8 G
That would be ag= F=aw) = = ;FBG = 5 °~ , where B= <—Tr p;’de>

Pde = Po,de —CONstant



IIT) Cy= j—z(that means that the K from 2.1) isequal to —1, and also that the energy of the universe
0
is bigger than 0 ) :

da da c
_ —dt= —
%+8"G§0,ma7173w 1+8WCp§wWLa7173w To
2 32

3

We shall define SWG% = B~ 173" =constant , to simplify our calculations .

3

da —Cat= 4By By, dBy By

The integral on the left side doesn‘t have a closed form .
We shall treat the 3 particular cases of interest:
a) For matter (w=0) :

d(Ba) _ B g,

1 T
ey

We can compute the integral on the left side using a hyperbolic substitution : Ba = sinh?(«)

= —d(Sinh2(T) ) _ B g 2sinh(a) cosh(a) da Si“h(fgsifz?(a) do — B gt=2sinh?(a) da = Zdt = (cosh(2a) — 1) do = L2 dt
To Sinh(or) o o o

1+

sinh2(a)

d(2a)

= cosh(2a)—==~ — da = LBlt=t = Q<Sinh(2a)_smh(2a(°))
To

2

2 cB
(o) = argsinh(v/Bag) , where

argsinh(z) is the argument of the hyperbolic function sinh(x). a(y =0 , assuming that this universe
had a Big Bang . = ay=0=>t= 2(Sinh(%‘) —o )

(o —ao) )) , where

cB 2
_ (cosh(2a) — 1)

Also a(q) 55

We cannot have a explicit function for a(;) because for that we need to find a(t) which would imply
to solve a transcendent equation , that being impossible through analytic methods.

2
2B 3%
0

— —1
We can ﬁnd pm(a) = poym(w) 3 , Where B: <S7TGPO,m>

b) For radiation (w =~ )

3
d(Ba) Zﬁdtﬁ d(Ba) _ _d(Ba) _ d(Ba)Ba _ _d( (Ba)?) _ d(1+ (Ba)?) _ ( 1+ (Ba)g)
1 T 1 a)2 Ba)? 2y/1+ (Ba)? 2 Ba)?2
St e ([ VIREDT VIR 2V B

=d(/1+ (Ba)?) :%dté V14 (Ba)? — /1 + (Ba))? :%t , where a(g)=0 , assuming that this

universe had a Big Bang.

cB cB 2 cB,\2
:>\/1+(Ba)2—1:7n—0t¢1+(Ba)2:(1+Tot> — Ba= (1+Tot) 1

5 ~1/2
=a== (1 +CT—Bt> — 1, where —SWGPZO”” =B 2= B= (87@@0”')
. -

35
-B 2
(1+“—t> —1
70

T‘2 7'0
= Pr(t) = Po,r B

0

—4

For this case we can also calculate the time dependance of the temperature of the radiation :



— —4\ 1/4
<1+:—0t> -1

ue _ g _(prweNija_ | e
=0Tl =T=( cr) =\ = Por B

4

c)For dark energy (w=-1) :

d(Ba) _cB d( Ba) :ﬁ
——_— = = mdt:—ﬁa)ul ,Odt
(Ba)~—2

Using Wolfram Alpha we can compute the integral on the left side :

VBaZr1+B c ey
() T (7 )

B, B\ 2
= (Ba)+ 1= (Ba)® - 2Ba(/(Bag)> + 1 + Bagg) )e +<( (Ba)®+ 1+ Bagg) Je )

cB

2 t 2 )2
=2Ba (Ba(o)) +1—|—Ba(0) e’ = ( (Ba(o)) +1+Ba(0))e’0 —1

cB —cB
=t —1 t
(U(Ba(o))2+1+Ba(o)>eT0 + (1/(Ba(0))2+1+Ba(0)> e "0

2B

=a=

If we assume that the universe had a Big Bang = a(g)=0

Ly —<B, cosh<£t>
_e’0 4e’0 o
=a() = 2B = B

1/2
87Gpo,de
,where B = (—2>

c
3?
0

Pde = Po,de —CONstant
We shall now consider the case when w = —% :

a= —477Gp07ma_3(1_§)+1(—%+%) =0=a%= 00:%;2 , where K is the K used and defined at 2.1) .
0

2

If K=1=a%= ;2 = ¢ is imaginary , which is impossible , so a universe like this can not exist .
0

If K=0=d?>=0= a=a()=constant = p,,, = po,ma(o?
—2
fK=-1 :>d2:i—§:>a— a(0) ::triotéa(t):a(o):tr—coté pm:poym(a(o) :Izr—(;t)

In a lot of the cases described above we have used the fact that if the universe we were talking
about had a “Big Bang” , then ag)=0 , so the size of that universe at its beginning was 0 . What
we mean by “Big Bang” , is the fact that the universe we were talking about had a beginning similar
to ours . That is , it expended from “nothingness”, a quantum fluctuation, a singularity , or in
more mathematical terms a () =0.

To find if a universe will collapse or expand forever we need to take the differantial equation:
i = —47Gpo ma~ 330 (w+ %)

and solve it to find a(;) . If the equation a(;) = 0 has any other solution besides the trivial one
a(o) =0 then the univers will collapse . If not , the universe will expand forever.

We shall now make a similar analysis to what we did at 2.6) .
If we s

I) If K=0 ( the energy of the universe is equal to 0 ) :



a) ff w#-1:

2
agy =" G, mt* D =0=t=0= a() =0

In this case the only solution is the trivial one so for any w, including matter and radiation with
the conditions above the universe will expand forever.

b) If w=-1:

87Gpo,m (t—to)
agy =e 3 % =0 = There are no solutions to this equation, so this universe will expand
forever.

IT) If K =1 ( the energy of the universe is less than 0) :
d(Ba) _ _ B,
To

1
(Ba)lT3w -1

For our universe (multiple fluids)
It has been determined that our universe is flat with a very small (0.4%) margin of error?.
So, it’s energy is ~0 and K =0.

In the Friedmann equation derivation at (2.1) p,, is the total equivalent mass density (the sum of
the 3 mass and equivalent mass density).

m —Kc?
(HL—S“C;P )a2: < _0

3

3
mass density and pg. is the equivalent dark energy mass density.

Now we shall use (14’):

(H z— M)(ﬂ =0, where py is the baryonic mass density, p, is the equivalent photon

py= py,0a21Fw0) pr= pyoa T w0) pae = pae,oa” 21T 0) (25)
Po=pPb,0+ Pr.o+ pde,0 (26)
Q0= L2 = 0.27 +0.04% Qp0="L20 =824 1077 Que,0="L42 = 0.73£0.04% (27)

<H2 _ 8nGpo(Q,0a 2 40 ga 3 Qg ga P ) >a2 =0
3

As we can see from the numerical values, the radiation component is negligible, so we can write:

<H2 _ 87\'Gpo(ﬂb,oa73(l+wb; +Qde,0a73(l+wde)) )a2 -0

Substituting Hy with % we obtain:
%= SWTGPU(Q;,,OLL*(HB‘%) + Qde,oa*(HSwdE)), where w, =0 and wge.=—1

. 8mwGpo -1 2
QQZT(waoa +Qd670a )

. 8wGp _
“= \/TU(Qb,oa '+ Qge,00)

Writing it in a differential form:

da —dt
\/@(Qb,oafl +Qae,0a?)

2. http://map.gsfc.nasa.gov /universe/uni_shape.html



da _ 87Gpo dt

V0067 + Qg e, 0a? 3
fda Q, 87ero
t=Ho\/Qp odt (28)
\/Tog =1/0 0v/ 4,0
(978

Integrating the left and right parts between 0 and a, respectively 0 and t, we have:

[fde0 2
2argsh Qb,}) a2
3

Qde)O waot (29)
2.0

3
argsh(, /%cﬁ) = %HO Qae ot

And here we find a(t).

a(t):3 S?dbf’ 51nh3( Hot\/Qde,O) (30

e

From (25):
pb(t) = pthoa_S = pone,Q Sinh_Q(%Ho Qde,Ot) (31)
pr(t) = por 0a=* = poQdy- 0( >3smh ( o Qde,Ot) (32)
pae(t) = poQe,0a’ = poQc,o0 (33)
. 2 de.0 . _8 3
p(t) = po (Qde,o sinh ™ ( Qae,ot) + o( = )3511111 3(5Hov/Qeot) + Qde,o) (34)

If we neglect the radiation part:

p(t) = po (Que,08inh~2(2 Hor/Qae,ot) + Qae.0) = poQae,0(1 +sinh~2(2 Hoy/Qqeot)) (34)

Age of the universe, periods of domination

For finding the age of the universe, we will equate p(to) with po.

P(to)zPoél:Qde,O(l—i-sinh_Q(%Ho Qde,ot)):}smh_( HO\/mtO) Qd 0_
3 HO\/mztozargsh( %)

Qde,0
argsh >
& ( 1-Q4e,0

. 5)
to= 3 Ho+/Qde,0 (35)

For Ho=71.7"2, to=13.54 x 10° years

For Hy=67.8 % 3 t,=14.32 x 10° years

For finding the periods of domination for each fluid type, we will compare their densities. The fluid
with the largest density will be the dominant one in the same volume.

From (31) and (32):
pb>pT:>Qb,0a_3>Qr70a_4:>a>%

From (30):

3. http://arxiv.org/abs/1303.5062
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3 o . .2/3 Q0
—_ 3( = )
1/Qdeyosmh (2Hot Qde,o) > oo
Plugging numerical values in:

2
0.7178sinh?(1.2816 Hot) > 3.05 x 10~% = ¢ > t; = 21366 ~ 9.37 x 10° years
From (32) and (33):

4
pr>pde:>QT’0a_4>Qde,0:>a< %
From (30) and by plugging numerical values in, we have t <t = 5.8 x 10% years
From (31) and (33):

Q.0
Qae,0

Pb> pae= 00 2> Qe o= a< ’
From (30) and by plugging numerical values in, we have t < t3=9.4 x 10? years
For 0 <t < t;, radiation dominated the universe.

For t; <t <ts, matter dominated the universe.

For ¢ > t3, dark energy dominated the universe.

Also, at t =19, the radiation’s energy density decreased under the dark energy’s density.

k
Density(—i]
m

\

15107 F

1.x1078 L

5 x 10747 |

— = — - Time(years)
4x10 G=10 8=10 1=10

108

S

Time(years)

107k 10 10° 10%
Figure 1. Plots of density against time (normal and logarithmic).

Radiation in orange, matter in blue, dark energy in greeen.

Total density in red.

11



3.4)

Pdom = PoSldom,oa S+ Wwdom)

Pdom > poQae,0a’ = a =31+ waom) 5 1

As we are interested in the far future, ¢t >ty = a(t) >1

Thus, we will have —3(1 + Wdom) > 0= Wdom < —1

This type of matter is called “phantom energy” . (citation wiki)

In this case, the universe will expand to an infinite size in a finite time?! 5.

Expansion of our universe:
Now we shall try to derive a relation from which we can find Hy :

Let‘s consider a photon traveling from the emission point to the observation point. The distance
covered by the photon in the time dt is dr =cdt. We cannot simply sum those elementary distances

cdt
because the space is expanding so we have to scale them. As such we have to sum dro=——, where
acy’

7o is the distance between the source of emission and the observer at the present time when a =1.

o cdt to cdt . )
f f ALl f ray=aq [, <=, where (4 is the distance between the source
te a(t) te a(t) te a‘(t)’

of emission and the observer at a given time t.

t da — a(e) _da 1
ro=aw) Gy w0 = a0 ) o s where ag) =55 and agy = 1.
From 1.3.b) we know that a) = TS = da= ﬁ = 7a%t)dz
_ A(tg) _a(t)dz _ a(rg) dz ze dz
=T = Q(p)C —= = agc
(t) (t) fa(te) ag 2 dt ) fa(t ) ZZ; t) f Ze H( ) (t H(z)

We have to find H .y now. Using the Friedmann equation (H 2 877,—5’))a2 = and expressions

87‘(Gp0

for the densities derived at 3.2) : (H2

universe is nearly flat6 we can use K=0.

_ ~Kc?
(Q.0a 3+ Qs 0a 4+Qdeyo))a2: T; . Because our

0

87er0

=H?=

(002 4+ Q. 0a™* 4+ Qqe.0) = H = Ho/ 0073+ Q062+ Qde.0

=H )= Hoy/Q,0(14+2)> +Qo(1+ 2)* + Qac,0

From the text of the problem we know that Dy = but L is an instrinsic property of the

17
anf?
source so it doesn’t depend on the distance from it, but f does depend on the distance between
the source and the observer which is ry as defined above.

AE, 1 AE, . . o . .
f= R where ~Is the energy in unit time as received by the observer. We can relate this
o 4mrg o

quantity to L in the following way:

4. http://arxiv.org /pdf/hep-th /0610213v2.pdf
5. http:/ /arxiv.org/pdf/astro-ph /0302506v1.pdf
6. http://map.gsfc.nasa.gov/universe/uni_shape.html
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AE~ % = AE,= AEQ%. Using the formula for the cosmological redshift derived at 1.3.b) :

AE.
:AEO:H%

Using the equation for cosmological time dilation also derived at 1.3.b) :
Ato= (14 z.) At

Using the definition of luminosity as the energy radiated by the source in unit time at its surface:

AE, L [ L L
L= AL, we now have f :m. We also know that DL = Ff = f :m
=D = (1 + Ze)To
We now have 3 main equations from which we can find a formula for Hy:
Ze dz Ze dz

riy=awefy g e =ro=cf o 7
Hzy=Hor/Q,0(1+2)% +Q o(1 + 2)* + Qae,0
Dp= (1 + Ze)'l’o

_ Dp _ Ze dz o
—ro B 1z B <Jo Ho/Q,0(1 +2)2 + Qr0(1 +2)7 + Q0 - Ho N
c(1+4 ze) Ze dz

Dr 70 /00 +2)°+ Q2 o(T+2)7 + Qac,o
From this formula we can compute Hy using the tables given.”
First method:
First we will linearize the data

o Ze dz
Let flze) =(1+2) [o" oo

Now, we can write Dy, = Hiof(ze)

7. general citation from int to modastro
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